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ABSTRACT

HEALPix—the Hierarchical Equal Area isoLatitude Pixelization—is a versatile structure for the pixelization of
data on the sphere. An associated library of computational algorithms and visualization software supports fast
scientific applications executable directly on discretized spherical maps generated from very large volumes of
astronomical data. Originally developed to address the data processing and analysis needs of the present generation
of cosmic microwave background experiments (e.g., BOOMERANG, WMAP), HEALPix can be expanded to meet
many of the profound challenges that will arise in confrontation with the observational output of future missions and
experiments, including, e.g., Planck, Herschel, SAFIR, and the Beyond Einstein inflation probe. In this paper we
consider the requirements and implementation constraints on a framework that simultaneously enables an efficient
discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere.
We demonstrate how these are explicitly satisfied by HEALPix.

Subject headings: cosmic microwave background — cosmology: observations — methods: statistical

1. INTRODUCTION

Advanced detectors in modern astronomy generate data at
huge rates over many wavelengths. Of particular interest to us
are those data sets that accumulate measurements distributed on
the entire sky, or a considerable fraction thereof. Typical exam-
ples include radio, cosmic microwave background (CMB), sub-
millimeter, infrared, X-ray, and gamma-ray sky maps of diffuse
emission, and full-sky or wide-area surveys of extragalactic ob-
jects. Together with this wealth of gathered information comes
an inevitable increase in complexity for data reduction and sci-
ence extraction. In this paper we are focused on those issues
related to the distinctive nature of the spherical spatial domain
over which the data reside. Our original motivations arose from
work related to the measurement and interpretation of the CMB
anisotropy. The growing complexity of the associated science
extraction problem can be illustrated by the transition between
the data sets from various experiments: COBE Differential Mi-
crowave Radiometer (DMR) (early 1990s, 7° FWHM resolution,
~6000 pixel sky maps at three wavelengths), BOOMERANG
(late 1990s, 12/ FWHM, partial sky maps of ~200,000 pixels
at four wavelengths), WMAP (early 2000s, resolution up to 14/
FWHM, ~-3 million pixel sky maps at five wavelengths), and
Planck (data expected ca. 2009, resolution up to 5 FWHM,
~50 million pixel sky maps at nine wavelengths). Science ex-
traction from these data sets involves the following:
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1. global analysis problems: harmonic decomposition, esti-
mation of the power spectrum, and higher order measures of
spatial correlations;

2. real space morphological analyses, object detection, iden-
tification, and characterization;

3. the simulation of models of the primary and foreground
sky signals to study instrument performance and calibrate fore-
ground separation and statistical inference methods; and

4. spatial and/or spectral cross-correlation with external data
sets.

These tasks, and many others, necessitate a careful definition of
the data models and proper construction of the mathematical
framework for data analysis such that the algorithmic and com-
puting time requirements can be satisfied in order to achieve the
successful and timely scientific interpretation of the observa-
tions. A particular method of addressing some of these issues is
described next.

2. DISCRETIZED MAPPING AND ANALYSIS
OF FUNCTIONS ON THE SPHERE

The analysis of functions on domains with a spherical to-
pology occupies a central place in both the physical sciences
and engineering disciplines. This is particularly apparent in the
fields of astronomy, cosmology, geophysics, and atomic and nu-
clear physics. In many cases the geometry is dictated either by
the object under study or by the need to assume and exploit ap-
proximate spherical symmetry to utilize powerful perturbative
techniques. Practical limits for the purely analytical study of
these problems create an urgent necessity for efficient and ac-
curate numerical tools.

The simplicity of the spherical form belies the intricacy of
global analysis on the sphere. There is no known point set that
achieves the analog of uniform sampling in Euclidean space
and allows exact and invertible discrete spherical harmonic de-
compositions of arbitrary but band-limited functions. All ex-
isting practical schemes proposed for the treatment of such
discretized functions on the sphere introduce some (hopefully
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small) systematic errors dependent on the global properties of
the point set. The goal is to minimize these errors and faithfully
represent deterministic functions as well as realizations of ran-
dom variates (both in configuration and Fourier space) while
maintaining computational efficiency.

We illustrate these points using as an example the field of
CMB anisotropies. Here we are already witnessing an explosive
growth in the volume of the available data. Indeed, full-sky mea-
surements of the CMB anisotropy in both total intensity and
polarization by current and future generations of surveys present
serious challenges to those involved in the analysis and scientific
exploitation of the results.

A pixelized sky map is an essential intermediate, and often
highly compressed, stage in the processing of data between the
raw form acquired by instrumental detectors and the final stage
of analysis resulting in estimates of typically a few values for
the physical parameters of interest. The COBE DMR sky maps
comprising 6144 pixels per map were considered large at the
time of their release (ca. 1992). As for both the currently avail-
able (e.g., WMAP) and forthcoming (e.g., ESA’s Planck sat-
ellite) CMB data sets, the associated full-sky surveys at an
angular resolution of ~10" (FWHM) should be comprised of a
few pixels per resolution element (so that the discretization effects
on the signal are subdominant with respect to the effects of the
instrument’s angular response) and will therefore require map
sizes of at least Ny of the order of a few times 1.5 x 10° pixels.
Even more pixels will be needed to fully render the angular res-
olution ofthe Planck HFI high-frequency channels. This estimate,
Npix, should be multiplied by the number of frequency bands (or
indeed, by the number of individual observing channels—74 in
the case of Planck—to account for the analysis work performed
before optimal co-added maps are made for each frequency band)
to yield the approximate expected size of this compressed form of
the survey data, which is then the input to the astrophysical anal-
ysis pipeline. Clearly, careful attention must be given to devising
data structures that can maximally facilitate the efficient analyses
of such large data sets, especially given that many essential sci-
entific questions can only be answered by studies of their global
properties.

This paper describes the essential geometric and algebraic
properties of our method for the digital representation of func-
tions on the sphere—the Hierarchical Equal Area and isoLatitude
Pixelization (HEALPix)—and the associated multipurpose com-
puter software package. This software has been made available to
the community since 1997.°

3. REQUIREMENTS FOR A SPHERICAL
PIXELIZATION SCHEME

The numerical analysis of functions on the sphere involves
(1) aclass of mathematical operations, whose objects are (2) dis-
cretized maps, i.e., quantizations of arbitrary functions accord-
ing to a chosen tessellation (an exhaustive partition of the sphere
into finite area elements). Hereafter, although we mostly special-
ize our discussion to the CMB-related applications of HEALPix,
our statements generally hold true for any relevant set of deter-
ministic and random functions on the sphere.

Considering point 1: The standard operations of numerical
analysis that one might wish to execute on the sphere include
convolutions with local and global kernels, Fourier analysis with
spherical harmonics and power spectrum estimation, wavelet

® HEALPix is currently distributed from the Web site http:/www.eso.org/
science/ healpix. However, in the near future the HEALPix Web site will move
to the new address http://healpix.jpl.nasa.gov.
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decomposition, nearest neighbor searches, topological analyses
including searches for extrema or zero crossings and the com-
putation of Minkowski functionals, and the extraction of patches
and finite differencing for solving partial differential equations.
Some of these operations become prohibitively slow if the sam-
pling of functions on the sphere and the related structure of the
discrete data set are not designed carefully.

Regarding point 2: Typically, a full-sky map rendered by a
CMB experiment contains

(a) signals coming from the sky, which are by design strongly
bandwidth-limited (in the sense of spatial Fourier decomposi-
tion) by the instrument’s angular response function;

(b) aprojection into the elements of a discrete map, or pixels,
of the observing instrument’s noise; this pixel noise should ide-
ally be random, and white, at least near the discretization scale,
with a bandwidth significantly exceeding that of all the signals.

With these considerations in mind we proposed the following
list of desiderata for the mathematical structure of discrete full-
sky maps:

1. Hierarchical structure of the database. This is recognized
as essential for very large databases and was indeed postulated
already in the construction of the Quadrilateralized Spherical
Cube!? (hereafter QuadCube; see White & Stemwedel 1992),
which was used for the COBE sky maps. A simple argument in
favor of this states that the data elements that are nearby in a
multidimensional configuration space (here, on the surface of a
sphere) are also nearby in the tree structure of the database. This
property facilitates various topological methods of analysis and
allows for easy construction of wavelet transforms on trian-
gular and quadrilateral grids through fast lookup of nearest
neighbors.

2. Equal areas for the discrete elements of the partition. This
is advantageous because white noise at the sampling frequency
of the instrument gets integrated exactly into white noise in the
pixel space, and sky signals are sampled without regional de-
pendence (although care must be taken to choose a pixel size
sufficiently small compared to the instrumental resolution to
avoid pixel shape—dependent signal smoothing).

3. Isolatitude distribution for the discrete area elements on
the sphere. This property is essential for computational speed
in all operations involving evaluations of spherical harmonics.
Since the associated Legendre polynomials are evaluated via slow
recursions, any sampling grid deviations from an isolatitude dis-
tribution result in a prohibitive loss of computational performance
with the growing number of sampling points.

Various alternatives for sampling distributions on the sphere
have been employed for the discretization and analysis of func-
tions (e.g., see Driscoll & Healy 1994, Muciaccia et al. 1998 [rect-
angular grids]; Baumgardner & Frederickson 1985, Tegmark 1996
[icosahedral grids]; Saff & Kuijlaars 1997, Crittenden & Turok
1998 [“igloo” grids]; Szalay & Brunner 1999 [a triangular grid]),
but each fails to meet simultaneously all the above requirements.
In particular:

(a) The QuadCube obeys desiderata 1 and (approximately) 2
but fails on desideratum 3 and cannot be used for efficient Fourier
analysis at high resolution.

(b) The Equidistant Cylindrical Projection (ECP), a very com-
mon computational tool in geophysics and climate modeling,
recently implemented for CMB work by Muciaccia et al. (1998),

10" See http://lambda.gsfc.nasa.gov/product /cobe/skymap_info_new.cfim.
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Fic. 1.—Quadrilateral tree pixel numbering scheme. The coarsely pixelized coordinate patch on the left consists of 4 pixels. Two bits suffice to label the pixels.
To increase the resolution, every pixel splits into 4 daughter pixels, shown on the right. These daughters inherit the pixel index of their parent (boxed) and acquire
two new bits to form the new pixel index. Several such curvilinearly mapped coordinate patches (12 in the case of HEALPix, and 6 in the case of the COBE
QuadCube) are joined at the boundaries to cover the sphere. All pixel indices carry a prefix (here omitted for clarity) that identifies which base-resolution pixel they

belong to.

satisfies desiderata 1 and 3 but by construction fails with desid-
eratum 2. This is a nuisance from the point of view of application
to full-sky survey data as a result of wasteful oversampling near
the poles of the map. While the angular resolution of the mea-
surements is fixed by the instrument and does not vary over the
sky, the map resolution, or pixel size, depends on the distance
from the poles. This must also be accounted for in work related to
the integration of data or discretized functions over the sphere.

(¢) Hexagonal sampling grids with icosahedral symmetry per-
form superbly in those applications where near uniformity of
sampling on the sphere is essential (Saff & Kuijlaars 1997), and
they can be devised to meet desideratum 2 (Tegmark 1996).
However, by construction they fail both desiderata 1 and 3.

(d) Igloo-type constructions are devised to satisfy desidera-
tum 3 (E. L. Wright 1997, private communication; Crittenden
& Turok 1998). Desideratum 2 can be satisfied to reasonable ac-
curacy if quite a large number of base-resolution pixels is used
(which, however, precludes the efficient construction of simple
wavelet transforms). Conversely, a tree structure seeded with a
small number of base-resolution pixels forces significant var-
iations in both the area and shape of the pixels.

(e) The GLESP construction (Doroshkevich et al. 2005) ex-
plicitly implements the Gauss-Legendre quadrature scheme to
render high accuracy in numerical integrations with respect to
latitude but allows irregular variations in the pixel area and is
not hierarchical—in fact, it offers no relation between the tes-
sellations derived at different resolutions.

4. MEETING THE REQUIREMENTS:
THE HEALPix SOLUTION

All the requirements introduced in § 3 are satisfied by the class
of spherical tessellations structured as follows (Gorski et al. 1999).

First, let us assume that the sphere is partitioned into a
number of curvilinear quadrilaterals, which constitute the base-
level tessellation. If there exists a mapping of each element of
partition onto a square [0, 1] x[0, 1], then a nested n xn sub-
division of the square into ever diminishing subelements is ob-
tained trivially, and a hierarchical tree structure for the resulting
database follows. For example, a 2 x 2 partition renders a quad-

rilateral tree, which admits an elegant binary indexation (il-
lustrated in Fig. 1) previously employed in the construction of
the QuadCube spherical pixelization.

Next, let us consider the base-level spherical tessellation. An
entire class of such tessellations can be constructed as illus-
trated in Figure 2. These constructions are characterized by two
parameters: Ny—the number of base-resolution pixel layers
between the north and south poles and Ns—the multiplicity of
the meridional cuts, or the number of equatorial or circumpolar
base-resolution pixels. Obviously, the total number of base-
resolution pixels is equal to Npase—pix = NoNg, and the area of
each one of them is equal to Qyase—pix = 47/ (NVpN;). One should
also notice that each tessellation includes two single layers of
polar cap pixels (with or without an azimuthal twist in their
respective positions on the sphere for odd or even values of N,
respectively) and (Vy — 2) layers of equatorial zone pixels,
which form a regular thomboidal grid in the cylindrical pro-
jection of the sphere. Since the cylindrical projection is an area-
preserving mapping, this property immediately illustrates that
the areas of equatorial zone pixels are all equal, and to meet
our requirement of a fully equal area partition of the sphere, we
need to demonstrate that our constructions render identical
areas for the polar pixels as well. Indeed, this allows one to
formulate a constraint on the colatitude 6, at which the lateral
vertices of both polar and equatorial pixels meet:

Ny Qbase—ni Ny — 1
ZOPTbase P L ponce cos 6, = —0 )

2 Ny
(1)

The curvilinear quadrilateral pixels of this tessellation class
retain equal areas but vary in shape, depending on their posi-
tions on the sphere. We have chosen the Ny = 3, Ny = 4 grid
(Fig. 2, middle row, right column) as the definition of our digital
full-sky map data standard. This choice was based on three driv-
ing requirements: that there should be no more than 4 pixels at
the poles to avoid acute angles, that the elongation of equa-
torial pixels should be simultaneously minimized, and that
the 2" multiplicity of pixels on rings in the equatorial zone

27(1 —cos b,) =
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Fic. 2.—Several possible equal-area isolatitude tessellations of the sphere, which can support a hierarchical tree for the further subdivision of each large base-
resolution pixel. Six variants of such a tessellation are shown here for several values of the grid parameters Ny and N, 6 refers to the colatitude and ¢ to the longitude.
For each panel two projections are shown: the top one is orthographic, the bottom one is cylindrical. 6« defines the line of constant colatitude that separates the equatorial
region from the northern polar region. This is shown by the top curve in the orthographic plot; also shown is the corresponding curve separating the equatorial and
southern polar regions, as well as the equator. The HEALPix implementation is described by Ny = 3 and Ny = 4.
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Fic. 3.—Orthographic view of the HEALPix partition of the sphere. The
overplot of equator and meridians illustrates the octahedral symmetry of
HEALPix. Light gray shading shows one of the 8 (4 north and 4 south) identical
polar base-resolution pixels. Dark gray shading shows one of the 4 identical
equatorial base-resolution pixels. Moving clockwise from the top left panel, the
grid is hierarchically subdivided with the grid resolution parameter equal to
Nsige = 1, 2, 4, 8, and the corresponding total number of pixels equal to
Npix = 12 x N2, =12, 48, 192, 768. All pixel centers are located on Nring =

side
4Ngige — 1 rings of constant latitude. Within each panel the areas of all pixels are

identical.

should be retained for reasons related to the fast harmonic
transform.

This preferred implementation, which is referred to as
HEALPix, is a geometrically constructed, self-similar, refinable
quadrilateral mesh on the sphere as shown in Figure 3. The base
resolution comprises 12 pixels in three rings around the poles
and equator. The resolution of the grid is expressed by the pa-
rameter Ngjqe, Which defines the number of divisions along the
side of a base-resolution pixel that is needed to reach a desired
high-resolution partition.!! All pixel centers are placed on rings
of constant latitude, and are equidistant in azimuth (on each
ring). All isolatitude rings located between the upper and lower
corners of the equatorial base-resolution pixels (i.e., —% <
cosf < %), or in the equatorial zone, are divided into the same
number of pixels: Noq = 4Nsige. The remaining rings are located
within the polar cap regions (|cos 6] > %) and contain a varying
number of pixels, increasing from ring to ring, with increasing
distance from the poles, by one pixel within each quadrant. A
HEALPix map has Nyix = 12N2,, pixels of the same area i, =
7T/ (3N szide)'

4.1. Pixel Positions

For a resolution parameter N4, the pixels are laid out on
4Nsige — 1 isolatitude rings.

The locations of pixel centers on the sphere are defined by
(z =cos b, ¢), where € [0, ] is the colatitude in radians mea-
sured from the north pole and ¢€[0, 27 is the longitude in

" 1t should be noted that the WMAP team uses an alternative notation for
defining various levels of resolution. Specifically, they refer to a “resolution
level” defined by Nijge = 2%, where k can adopt the integer values 0, 1,2, . ...

radians measured eastward. Pixel centers on the northern hemi-
sphere are given by the following equations:

North polar cap.— For p, = (p + 1)/2, the ring index 1 <
i < Niide, and the pixel-in-ring index 1 < j < 4i, where

izl( Ph— I(ph)>—|-1, )

j=p+1-2iG—1), (3)
l'2
S . 4)
3N52ide
T/, S B
¢_Z(1_E)’ and s = 1. (5)

North equatorial belt.—Forp’ = p — 2Ngige(Nside — 1), Nside <
i < 2Nsige, and 1 < j < 4Ni4, Where

i=1(p'/4 Nsige) + Nside, (6)
Jj = (p'mod4 Nyge) + 1, ()

4 2i
Z =7 i 8
3 3Nside ®

e N

= j — — ds=(i— Ng 1 d27 9
=i U e i

where the auxiliary index s describes the phase shifts along the
rings and I(x) is the largest integer number smaller than x.

Pixel center positions in the southern hemisphere are obtained by
the mirror symmetry of the grid with respect to the equator (z = 0).
One can check that the discretized area element | AzA¢| =i isa
constant by defining Az and A¢ as the variation of z and ¢ when i
and j, respectively, are increased by unity.

4.2. Pixel Indexing

Specific geometrical properties allow HEALPix to support
two different numbering schemes for the pixels, as illustrated in
Figure 4.

First, in the ring scheme, one can simply count the pixels mov-
ing down from the north to the south pole along each isolatitude
ring. It is in this scheme that Fourier transforms with spherical
harmonics are easy to implement. Second, one can replicate the
tree structure of pixel numbering used, e.g., with the QuadCube.
This can easily be implemented since, because of the simple
description of pixel boundaries, the analytical mapping of the
HEALPix base-resolution elements (curvilinear quadrilaterals)
intoa [0, 1]x[0, 1] square exists. This tree structure, aka nested
scheme, allows one to implement efficiently all applications in-
volving nearest-neighbor searches (Wandelt et al. 1998), and
also allows for an immediate construction of the fast Haar wave-
let transform on HEALPix.

The base-resolution pixel index number fTuns in {O7 NoNy —
1} ={0, 11}. Introducing the row index

frow:I(f/Ncﬁ)v (10)
we define two functions that index the location of the south-

ernmost corner (or vertex) of each base-resolution pixel on the
sphere in latitude and longitude, respectively:

Fl(f):ﬁow+27 (11)
Fo(f) =2(fmod Ny) — (frowmod2) + 1. (12)
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Consider the nested index p,€[0, 12N2,, — 1] and define
Pl =p,modN2,., where p! denotes the nested pixel index
within each base-resolution element. This has the binary rep-
resentation p, = [. . .byb1bo, (and b; = 0 or 1 and has weight
2h.

Given a grid resolution parameter Nj;qe, the location of a pixel
center on each base-resolution pixel is represented by the two
indices x and y, both of which are members of {0, Ngqge — 1}.
They both have their origin in the southernmost corner of each
base-resolution pixel, with the x-index running along the north-
east direction, while the y-index runs along the northwest direc-
tion. The binary representation of p/, determines the values of x and
y as the following combinations of even and odd bits, respectively:

X = [ . .b2b0]2, (13)

Next we introduce the vertical and horizontal coordinates
(within the base-resolution pixel),

v=x+y, (15)
h=x-y, (16)

and obtain the following relation for the ring index i€ {l,
(NG + 1)szide - 1}

i=F(f)Nsge —v—1, (17)

as well as the longitude index

F Ns; h
j= 2(f) 51§c+ ""57 (18)

which can be translated into (z, ¢) coordinates using equa-
tions (4), (5), (8), and (9).

4.3. Pixel Boundaries

The pixel boundaries are nongeodesic and take a very simple
form: cos @ = a + b¢ in the equatorial zone and cosf = a +
b/¢? in the polar caps. This allows one to explicitly check by
simple analytical integration the exact equality of area among
pixels and to compute efficiently more complex objects, e.g.,
the Fourier transforms of individual pixels.

Since the pixel center location is parameterized by the integer
value of j, setting j = k + % orj==k —+—% + i (with k a positive
integer in eq. [5]) and substituting into equation (4) will give
for the pixel boundaries of the north polar cap (z > %)

K2 7\?
-1 (I 19
: 3A§k<2@>’ (19)
K2 T 2
- (T 20
: 3N&e(2@——w)’ (20)

where ¢, = ¢ mod 3. The base pixels have boundaries defined
as

2>, ¢=k=, (21)

with £’ =0, 1, 2, 3.

TABLE 1
SumMARY OF NUMBER OF PIxELs AND PixEL Sizes AccissiBLE To HEALPix

k Nyge = 2+ Npix = 12N2;, Opix = L7

1 12 58%
2 48 29%3
4 192 147

8 768 7°33

16 3072 3%6

32 12,288 1°83
64 49,152 55/0
128 196,608 27!5
256 786,432 13!7

512 3,145,728 6/87

1024 12,582,912 3/44

2048 50,331,648 1/72
4096 201,326,592 5175
8192 805,306,368 25"8
214 3.22x10° 1279

215 1.29 x10%° 644

216 5.15%x10'0 3722

217 2.06x 10" 1761

29, 2% 3.46x10'8 3793 x 1074

Nortes.—Currently, the use of 32 bit signed integers for the pixel indexing
restricts the resolution accessible to Ngge < 8192. The use of 64 bit signed
integers will allow a value Ngg. = 22° to be achieved. Note that k corresponds to
the “resolution parameter” referred to by the WMAP team.

Similarly, for% <z< f% the pixel boundaries can be found
by setting j = k +5/2 + (i — Ngige)/2 in equation (9) and sub-
stituting into equation (8):

2 4k 8
L8

3 3Nside 3 '

(22)

Using these pixel boundaries, one can easily check by integra-
tion that each individual pixel has the same surface area ()i
(see the Appendix).

Table 1 summarizes the number of pixels and resolutions
available in HEALPix. Since all pixels have the same surface
area but slightly different shape, the angular resolution is
defined as

epix = Qpix
3 3600’
—VF . (23)
7T Nside
4.4. The HEALPix Spherical Projection

In §§ 4.1 and 4.3 we present the algebraic description of pixel
center locations and pixel boundaries of the HEALPix tessel-
lation. In this subsection we recast these equations in the form
that explicitly demonstrates the global spherical projection na-
ture of HEALPix, i.e., the global HEALPix mapping from the
surface of the sphere to the flat domain, and its inverse trans-
formation. The existence of this transformation is essential for
cartographic applications and helpful for data storage, e.g., us-
ing FITS (Calabretta & Greisen 2002). Indeed, Calabretta (2004)
provides complete details on how to represent celestial coordi-
nates for data in the HEALPix projection and subsequently store
the data as a FITS image.

Consider coordinates (x,, y,), where x, runs along the longi-
tude and y, runs along the latitude, which are related in the
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Fic. 5.—Spherical HEALPix projection onto the plane. Base-resolution HEALPix pixels (indexed here from 0 to 11, as in the HEALPix software) project into 12
identical square pixels in the plane. Hierarchical subdivision of the HEALPix grid generates identical square pixel images over the entire planar image of the
HEALPix tessellation (Ngige = 4 pixel centers are shown within the base pixels 1, 6, and 10). Constant-latitude lines map into horizontal lines on the plane (dashed
lines), and the HEALPix spherical projection mapping of meridians on one hemisphere is shown by the dashed lines.

following way to the previously used HEALPix ring number
i€{l, 4Ngge — 1} and pixel index j (on ring 7):

= o

™
4Nside .

Vs = (2Nside - i)

(25)

Upon substituting these formulae into equations (8) and (9)
(equatorial zone) and equations (19) and (20) (polar cap), we
recast the pixel center positions as follows: in the HEALPix
equatorial zone (|z| < 2)

Xs = ¢a (26)
37
Vs = ?Zv (27)

and in the HEALPix polar caps (|z| > %)

x = 6= (0@ — D) (é — 7). (28)
¥ =500, (29)

where z = cos 0, ¢, = (¢ mod %), o(z) =2 — [3(1 — Z)}l/z for
z >0, and o(—z) = —o(2).

The same algebra renders the following representation of
pixel boundaries:

T T km
¢ — Xo _—
Vs T N

(30)

which is now valid in both the polar and equatorial zones of
HEALPix, unlike the previous description in § 4.3.

The inverse mapping from the (x,, y,) plane to the sphere (6, ¢)
is given by the following equations: in the HEALPix Equatorial
zone (|| < m/4)

(b = Xs, (31)
h—> (32)
cos f =2—;,

and in the HEALPix polar caps (|ys| > 7/4)

_ |ys| — m/4 ™
(ZS—Xs—m(Xz—Z)a (33)

1 4|ys|>2 Vs
cosf=|1—=(2— , 34
[ 3 ( T |ys| ( )

where x; = (x;mod?). In the polar cap regions x, has to satisfy
the condition

m s ™ m
n—g <F-lnl for T<inl<3. (39

Equations (26)—(29) and (31)—(35) provide a complete de-
scription of the HEALPix spherical projection (from the sphere
to the plane, and the inverse).

The HEALPix projection of the sphere to the plane is illustrated
in Figure 5. This reveals the nature of the HEALPix grid as a union
of 12 identical diamond-shaped base-resolution pixels, and illus-
trates well the pixel area equality (all pixels of varying shape on
the sphere get projected into identical square pixels on the plane).
Calabretta (2004) has demonstrated that such a projection is one of
abroader class, and derived the corresponding projection equations.
In addition, he suggests making an extension to this represen-
tation of the HEALPix projection on a two-dimensional grid that
may improve the storage of HEALPix data as FITS images.
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5. SPHERICAL HARMONIC TRANSFORMS

The requirement of an isolatitude distribution for all pixel
centers was built into HEALPix in order for the grid to support
fast discrete spherical harmonic transforms. The reason for the
fast computational time of the harmonic transform (scaling as
NN;{?) is entirely geometrical—the associated Legendre func-
tion components of spherical harmonics, which can only be
generated via slow recursions, have to be evaluated only once
for each pixel ring. For other grids that are not constrained to be
isolatitude, extra computing time is wasted on the nonoptimal
generation of the associated Legendre functions, which typi-
cally results in a computational performance of order ~N gix.
This geometrical aspect of the discrete spherical transform com-
putation is illustrated in Figure 6, which compares HEALPix
with other tessellations including the QuadCube, icosahedral
tessellation of the sphere, and the ECP or “geographic grid.”
This plot makes it visually clear why the isolatitude ECP and
HEALPix point sets support faster computation of spherical har-
monic transforms than the QuadCube, the icosahedral grid, and
any nonisolatitude construction.

Figure 7 demonstrates the fundamental difference between
computing speeds, which can be achieved on isolatitude and
nonisolatitude point sets. In order to be able to perform the
necessary computational work in support of multimillion pixel
spherical data sets one has to resort to isolatitude structures of
point sets/sky maps, e.g., HEALPix. Moreover, future require-
ments are already fairly clear—the measurement of the CMB
polarization will require huge multielement arrays of detectors,
and will produce data sets characterized by a great multiplicity
(of the order of a few thousand) of sky maps. Since there are no

QuadCube, 1536 pixels

) Icosahedron, 1692 pixels
a e gesdes, »

2112 pixels

Fic. 6.—Comparison of HEALPix with other tessellations, including the
QuadCube, icosahedral tessellation of the sphere, and ECP or “geographic
grid.” The shaded areas illustrate the subsets of all pixels on the sky for which
the associated Legendre functions have to be computed in order to perform the
spherical harmonic transforms. This plot demonstrates why the isolatitude ECP
and HEALPix point sets support faster computation of spherical harmonic
transforms than the QuadCube, the icosahedral grid, and any nonisolatitude
construction.
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Fic. 7—lllustration of the fundamental difference between the computing
speeds that can be achieved on isolatitude and nonisolatitude point sets. In
order to be able to perform the necessary computational work in support of mul-
timillion pixel spherical data sets one has to resort to isolatitude structures of
point sets/sky maps, e.g., HEALPix. Moreover, future requirements are already
fairly well established—measurements of the CMB polarization will require huge
multielement arrays of detectors and will produce data sets characterized by a
great multiplicity (~1000) of sky maps. Since there are no computationally
faster methods than those already employed in HEALPix and global synthesis/
analysis of a multimillion pixel map consumes about 10> s of CPU time on a
standard serial machine, the necessary speed-up will need to be achieved via
optimized parallelization of the software.

computationally faster methods than those already employed in
HEALPix, and global synthesis/analysis of a multimillion pixel
map consumes about 10% s of CPU time for a standard serial ma-
chine, the necessary speed-up will have to be achieved via op-
timized parallelization of the required computations.

A detailed description of the implementation and perfor-
mance of spherical harmonic transforms in the HEALPix soft-
ware package will be given in a separate publication.

6. SUMMARY

The Hierarchical Equal Area isoLatitude Pixelization,
HEALPix, is a methodology for the discretization and fast nu-
merical analysis and synthesis of functions or data distributed on
the sphere. HEALPix is an intermediate data-structural, algo-
rithmic, and functional layer between astronomical data, and the
domain of application of a variety of science extraction tools.
HEALPix as a sky map format and associated set of analysis and
visualization tools has already been extensively adopted as an
interface between Information Technology and Space (and sub-
orbital) Science. This is manifested by applications of HEALPix
in the following projects: CMB experiments such as the bal-
loon-borne BOOMERANG (de Bernardis et al. 2000; Ruhl et al.
2003) and Archeops (Benoit et al. 2003a, 2003b), the satellite
mission WMAP (Bennett et al. 2003), the forthcoming satel-
lite mission Planck, the Sloan Digital Sky Survey, and others.
Figure 8 demonstrates a selection of illustrations of some of
the better known applications of HEALPix to date.
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Fic. 8.—Applications of HEALPix. We show examples of both CMB data sets (existing or forthcoming) constructed using the HEALPix data structure and
examples of science results derived from those data sets, specifically, power spectra of the temperature and polarization anisotropy. Sky map visualizations were
generated using HEALPix tools. Top left panel: Partial sky map of the CMB sky at 150 GHz produced by the 1998 flight of the BOOMERANG experiment. Thick
contour shows the area (2.9% of the sky) used for estimation of the power spectrum of the CMB anisotropy. Top right panel: Angular power spectrum of the CMB
anisotropy. The red points are derived from the BOOMERANG 1998 data (within the contour on the map in the left panel) using a MASTER-like approach. The
green curve shows the best fit to the first-year WMAP results. Middle left panel: Orthographic projection of the WMAP one-year W-band full-sky map smoothed with
a 1° FWHM Gaussian filter. The temperature scale is the same as in the other sky map plots. Middle right panel: Comparison of current (observational) and future
(predicted) determinations of the CMB power spectrum. The WMAP one-year determination of the temperature power spectrum is shown for individual multipoles
with black plus signs and after binning in / as red diamonds. The signal-to-noise ratio falls to unity by / = 666. For comparison, the top green curve shows the best-
fit theoretical spectrum together with the expected unbinned Planck 217 GHz measurement error. Absolute measurement values for the WMAP temperature-
polarization (TE) correlation are shown as blue diamonds (error bars divided by 10 to improve legibility). The magenta and black curves show, respectively, the
WMAP best-fit TE and EE Cjs. These should be contrasted with the light blue and green shaded areas, which are the predicted measurement errors expected from the
Planck 217 GHz channel for a binning range of 10 in /. Finally, the bold light blue curve shows the tensorial contribution to the polarization signal induced by gravity
waves during the inflationary epoch and the lensing of the scalar polarization by large-scale structures. These signals are currently outside the range of detect-
ability by suborbital experiments. The development of multielement detector arrays, together with space-borne experiments such as Planck and the Beyond-Einstein
probe, will directly measure the CMB properties in the high resolution and sensitivity regime for which future HEALPix applications will be optimized. Bottom left
panel: Simulation of the Planck full-sky CMB signal at 217 GHz (5 FWHM beam; this will be one of the highest angular resolution and sensitivity Planck channels)
for temperature (color-coded map) and polarization (headless vectors). For clarity the polarization field has been smoothed with a 2° FWHM spatial Gaussian filter.
Bottom right panel: Gnomonic projection of a 1225 x 12%5 cutout of the full-sky map shown in the bottom left panel. This time the polarization is left unsmoothed. It
is on these small (arcminute) angular scales, corresponding to the high-/ regime in the spectral plot shown in the middle right panel, where future CMB experiments
will probe currently unknown properties of the universe.
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APPENDIX
SURFACE AREA OF PIXELS

In this section, we demonstrate in detail that the boundaries introduced in § 4.3 define pixels of equal area
Qpix = 47T/Npix- (Al)

The calculations are performed in the cylindrical coordinate system (z = cos @, ¢), since the mapping from the sphere to these
coordinates, (6, ¢)—(z, ¢), is area-preserving and the pixel boundaries have a simpler form in cylindrical coordinates.

For clarity, calculations are performed for the “standard” implementation of HEALPix (Ny = 3, Ny = 4, and N,ix = 12N2,,), but
remain valid for any variant.

Al. EQUATORIAL REGIME

In the region —% <z< % the pixel boundaries are defined in cylindrical coordinates by parallel straight lines of the form (eq. [22])

26, K) =3+ ka +bo, (A2)
() K) =2 +Ka —bo, (A3)

where a = 4/(3Nsige), b = 8/(37), and k and k' are integers. Since the boundaries of a given pixel are parameterized by (k, k + 1)
and (k', k' + 1) for z, and z,, respectively, the pixels are regular diamonds where the diagonals sit along the north-south and east-
west axes, respectively (see Fig. 2). The north-south diagonal has a length Az = a, and the east-west one has a length A¢ = a/b.
Since the area of a diamond with orthogonal diagonals is the half product of the two diagonal lengths, the area of each pixel is

2

1 a s
AQ =-AzA¢p=—=——= Quix- (A4)
2 26 3NZ, "
A2. POLAR REGIME
For z > % and 0 < ¢ < 7/2, the pixel boundaries (eq. [20]) are
ke
sk 0 =1- (%) (A3)
Ke \*
Zm(k/7 (b) =1- (m) ) (A6>

where ¢ = 7/ (12)1/ 2 /Nsige and k and k' are nonnegative integers. The vertices of the pixels are the intersections of z, and z,, for an
arbitrary k, k' and are located at

1 (k+k\?
k, kK)=1—~ A
k1) =13 (5 (A7)
n_ Tk

As illustrated in Figure 9, each pixel, delineated by z, and z,, with parameters &, k + 1, and k', k" + 1, respectively, is a curvilinear

quadrilateral for which the diagonal lies along the east-west axis. This can be divided into four sectors whose area can be readily computed.
The northwest sector, defined as

¢ < ¢17<k7 k/)7

z>z(k, K+ 1), z<z,(0, k), (A9)
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v(k,k’+1)

v(k+1,k+1)

Fic. 9.—Calculation of the pixel area in the northern polar regime. z, and z,, are the lines defining the pixel boundaries (eqgs. [20] and [A6]) parameterized by the
integer indices k and k', respectively, and the black circles are the pixel vertices, the location of which depend on k, k’ (and Ngj4). The pixel is divided into four
sectors whose area can be readily computed (see the Appendix) to prove that all pixels have the same surface area .

has a surface area of

Ay = / P do 20, &) —zuk, K +1)] =K (A10)
oo /1) ’ ’ 6NZ,. k+ k'
The northeast sector is defined as
o> o)k, k'), z>z(k+1, k"), z<zu(0, k), (A11)

which is related to the northwest sector definition (eq. [A9]) by the mapping (k, k', §)— (¥, k, /2 — ¢). Therefore, its surface area is

™ k'
AONE = —————. Al2
NN kK (A12)
The southeast sector, defined as
¢>¢k+1, k' +1), z<z,(k+1, k'), z>z)(¢, k+1), (A13)
has a surface area of
@,,(k+l,k/) ™ k + 1
AQg :/ do |zo(k+1, k') —z,(¢, k+ 1) = ——————. Al4
: o (k+1,k"+1) [ ( ) v ] 6stide k+k'+2 ( )
The southwest sector is defined as
o< dk+1, kK +1), z<zk, K +1), z>z,(p, k' +1), (A15)
which is related to the southeast sector definition (eq. [A13]) by the mapping (k, k', ¢)—(k', k, /2 — ¢). Therefore,
T K +1
AQgy = —————. Al6
W eN2 k k42 (A16)
We then find
T
AQ = AQnw + AQng + AQgg + AQgw = N = Qpix. (A17)

side
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It is worth noting that the north and south parts of the pixels have the same area

Qpix

Ay + Alng = Alss + AQsy = 2= (A18)

Results obtained above for the quadrant 0 < ¢ < 7/2 in the north polar region can be extended to the other quadrants by translation in

¢ and to the south polar region by the mapping z — —z.

A3. TRANSITION REGIME

Pixels located at z = % (resp. z = —%) have their north (south) boundaries defined in the polar regime (eq. [A6]) while their south
(resp. north) boundaries follow the Equatorial regime (eq. [A3]). Noting that in both regimes the north and south part of the pixels
have the same area of {2;,/2, it is straightforward to show that all the transition pixels have the same area (2,y.
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